

Economic effects of climate change in the agricultural sector – towards a closed-loop assessment

Franziska Piontek

Miodrag Stevanovic, Nico Bauer, Hermann Lotze-Campen, Alexander Popp, Jan Philipp Dietrich, Christoph Müller

Motivation & aim

Biophysical models

- Direct connection to GCMs
- Detailed representation of biophysical processes
- High resolution impacts

IAMs

- Reduced form damage functions
- No interaction with preceding levels

$$D(r,t) = aT + bT^2$$

→ How can we synthesize detailed and vast results from impact models for policy makers?

Attempt @ PIK – focus agricultural damages

IAMC Meeting Utrecht 2012

Where are we now? → work in progress, multiple work streams

- LPJmL level: ISI-MIP results
 - 5 GCMs
 - 4 RCPs
 - Runs with/without CO2 fertilization and irrigation
 - 12 crops
 - \rightarrow in analysis phase
- MAgPIE/ReMIND-R level: data from GLUES project
 - UKMO GCM, SRES A2
 - \rightarrow Testing sensitivites and concept
 - \rightarrow All results preliminary!

Franziska Piontek et al. IAMC Meeting Utrecht 2012 Why ISI-MIP?

- CMIP5 data
- Cross-sectorally consistent
- Impact model uncertainty

Goal: use SSP framework

РІК

Step 1: Climate change impacts in LPJmL

Relative change in calorie availability 2069-2099 vs. 1980-2010

HadGEM2-ES RCP 8.5 No CO_2 fertilization

12 crops: wheat, rice, maize, soy, cassava, millet, groundnuts, rapeseed, sugar beet, sugar cane, sunflower, field peas

1

Step 2: Agricultural damages in MAgPIE

Concept of damages in MAgPIE – regional level

Total costs = production costs for livestock and crop production + costs of technological change to increase yields + land conversion costs + intraregional transport costs

Change in supply

Change in consumer & producer surplus

Sum = change in total welfare

GLOBAL 10

Agro-economic effects of climate change in MAgPIE – UKMO, no CO₂ fertilization, SRES A2

Results from Stevanovic et al. (in preparation)

Regional effects

% of agricultural GDP in 2085:

NAM: +35.1% FSU: +1.9% EUR: +4% PAO: -9.4% LAM: -6.8% PAS: -4.7% CPA: -5% AFR: -9.5% SAS: -15.7% MEA: -64.7%

Franziska Piontek et al. IAMC Meeting Utrecht 2012

Ρ

Step 3: Input of agricultural damages in ReMIND-R

Method & problems

GDP(t,r) – export(t,r) + import(t,r) = consumption (t,r) + investment(t,r) + ESM costs(t,r)

* Damages(t,r) = losses as % of GDP from MAgPIE results

→ Currently only *informing* ReMIND-R!

Problem: different regions

First results

Conceptual challenges

- Mix of positive and negative impacts on biophysical level within regions
- Importance of impact differs when taking into account importance of agricultural sector → regions with large agricultural GDP are those with smallest overall GDP
- Distribution issues:
 - Consumer vs. producer side
 - Variety of incomes in/between regions

Intermediate step: aggregation and equity

Intermediate step: equity

Goal 2: apply equity weighting schemes from Frankhauser et al. 1997

Weighting with per capita GDP

Larger range, largest factors for SAS, AFR, CPA, MEA

Conclusions & next steps

We have:

- 1st steps towards improving studies of CC damages by directly coupling biophysical and economic models
- Consistently trace effects from LPJmL via MAgPIE to ReMIND-R
- Clear need to look deeper into aggregation and weighting of damages this gives opportunity to do so!

Conclusions & next steps

We need:

- Grid-based damages from MAgPIE
- Better integration of this in ReMIND-R
- Feedback via simplified climate model or impact functions?

Possible derivation of impact functions?

Relative change in wheat yields for 4 GCMs, all RCPs (2069-2099 vs 1980-2010)

With (green) and without (blue) CO2 fertilization

Preliminary

IAMC Meeting Utrecht 2012

Conclusions & next steps

We need:

- Grid-based damages from MAgPIE
- Better integration of this in ReMIND-R
- Feedback via simplified climate model or impact functions?
- Extension to other sectors

Links to :

- ISI-MIP → cross-sectorally consistent impact and uncertainty assessment, impact functions
- SSP framework \rightarrow adaptation, aggregation

Thank you!

