

Deriving carbon budgets for IAM models

Michiel Schaeffer (CA) Maarten van den Berg (PBL) Detlef van Vuuren (PBL/UU)

Why focus on CO₂ budgets

- Part of the community does not have all gases / full climate model CO₂ budget could link these models to other targets
- Running under CO₂ budgets reduces uncertainty and focus analysis on the area where most of the action would need to occur
- Budget might be interesting for policy-makers, allows for substitution in time – but also communicates the "eating away the cake "concept well (Nature budget papers from 2009)

CO₂ budgets

Claim paper Meinshausen et al: CO2 budgets upto 2050 very good predictor for overshoot 2°

> Uncertainties:

- Climate system (if related to temperature)
- Carbon cycle (co2 removal rate; carbon cycle feedback)
- Forcing from other gases:
 - ➤ CH4, N2O etc
 - Aerosols
- Distribution CO2 energy vs. CO2 land
- Literature at the time of Meinshausen paper small at the low side (just a few models'

Concentration to radiative forcing

Emissions to concentrations

13 december 2012

AMPERE Method to derive CO2 budgets

Methods

Planbureau voor de Leefomgeving

AMPERE Method to derive CO2 budgets

- AME and EMF24 scenario collections
- MAGICC6 Monte-Carlo setup (e.g. Meinshausen et al 2009; 2011 for RCPs)
 - 9 carbon-cycle model emulations (C4MIP)
 - 600 observationally constrained climate-model parameter sets reproducing climate sensitivity PDFs

AME & EMF24 scenario library

- 27 baseline scenarios
- 74 scenarios with all WMGHGs and aerosol precursors, as well as land-use CO2
- 125 scenarios with at least energy-CO2, CH4, N2O, SOx
- 263 scenarios with at least energy-CO2, CH4, N2O
- Total 318 scenarios (with at least energy-CO2)

2°C probability all scenarios vs subset

Warming by 2100 compared to RCPs

Effect of non-CO2 emissions on budgets

Planbureau voor de Leefomgeving

2000-2100 total CO2

Effect of net-negative CO2 emissions on budge

Planbureau voor de Leefomgeving

pCO2eq/RF budgets

Planbureau voor de Leefomgeving

pCO2eq/RF budgets

Planbureau voor de Leefomgeving

pCO2eq/RF budgets

Top row in each cell: median and 20-80%tile Lower row in each cell: mean ±1SD Planbureau voor de Leefomgeving

target	450 ppm CO ₂ eq	500 ppm CO ₂ eq	550 ppm CO ₂ eq
	in 2100	in 2100	in 2100
Fossil-fuel CO ₂ 2020	30 (28-33)	31 (27-33)	36 (34-37)
(GtCO ₂ /yr)	30 ±3	30 ±4	35 ±2
Fossil-fuel CO ₂ 2030	24 (22-28)	28 (22-31)	36 (31-38)
(GtCO ₂ /yr)	24 ±4	27 ±6	35 ±4
Fossil-fuel CO ₂ 2050	12 (8-14)	17 (13-20)	26 (23-28)
(GtCO ₂ /yr)	12 ±4	17 ±4	26 ±3
Fossil-fuel CO ₂ budget	1200 (1200-1400)	1300 (1200-1500)	1600 (1500-1700)
2000-2049 (GtCO ₂)	1200 ±100	1300 ±100	1600 ±100
Fossil-fuel CO ₂ budget	1300 (1300-1500)	1900 (1500-2000)	2400 (2300-2600)
2000-2100 (GtCO ₂)	1400 ±200	1800 ±300	2400 ±200

target	450 ppm CO ₂ eq	500 ppm CO ₂ eq	550 ppm CO2eq
	in 2100	in 2100	in 2100
Total GHG 2020	44 (40-48)	46 (40-49)	50 (48-51)
(GtCO ₂ e/yr)	44 ±4	44 ±6	49 ±2
Total GHG 2030	39 (34-40)	41 (35-46)	49 (45-51)
(GtCO ₂ e/yr)	37 ±3	40 ±6	48 ±3
Total GHG 2050	21 (17-25)	27 (24-30)	36 (35-39)
(GtCO ₂ e/yr)	21 ±5	27 ±4	37 ±3
Total GHG budget	1900 (1800-2000)	2100 (1800-2200)	2300 (2200-2400)
2000-2049 (GtCO ₂ e)	1900 ±100	2000 ±200	2300 ±100
Total GHG budget	2400 (2300-2600)	3000 (2600-3200)	3500 (3400-3700)
2000-2100 (GtCO ₂ e)	2500 ±200	2900 ±300	3600 ±100

"Predictive skill" of budgets

Conclusions

- CO2 budgets can help to connect different models
- But much more uncertain than suggested earlier
- We have an method to estimate budgets and uncertainty... but realize that at the low side, actually uncertainty might be even larger than suggested by our uncertainty ranges.