

Exploring the feasibility of low-carbon scenarios using historical energy transitions analysis

Tamaryn Napp¹, Ajay Gambhir¹, Rebecca Thomas¹, Adam Hawkes¹, Dan Bernie², Jason Lowe² and Charlie Wilson³

¹Grantham Institute, Imperial College London, UK ²Met Office Hadley Centre, UK

³University of East Anglia, UK

IAMC 2015

An institute of Imperial College London

Funded by

Synopsis

Modelled scenarios of 2°C exhibit rapid low-carbon technology deployment – is this realistic?

What can we learn from historical energy transitions?

Six methods to assess realism of a modelled 2°C pathway

Adjustments to pathway to make it more realistic

Can we still achieve 2°C?

How do future 2°C scenarios compare to the past?

What do the experts think about factors to consider?

What does the literature say?

Individual technologies rarely grow at >20% per year

Technologies have not been deployed at more than several 10's of GW per year

Growth curves tend to be "s-shaped"

The greater the eventual extent of deployment, the longer the duration of deployment

Growth does not continue to be exponential – it shifts to linear

Established primary energy sources decline gradually

What does an unconstrained 2°C scenario show?

What does a more constrained 2°C scenario show?

What does a highly constrained 2°C scenario show?

Consequences of constraints

No technology growth constraints: 1,340 GtCO₂ can be achieved

2°C can be met

Technology growth constrained to historical maxima: <1,540 GtCO₂ can't be achieved

2.1°C can be met

BUT: Concerted policy can lead to very rapid technology growth (e.g. solar)

Limitations and further research

History a guide to the future?

Demand side technologies?

Resources, skills, materials, finance for simultaneous technology deployments?

BECCS!