12th IAMC meeting Tsukuba, December 2nd

Methodological Issues

Application of Custom Neural Networks in Transport Sectors Energy Service Demand Estimation for SSPs

Siddharth Joshi, PhD Student – MaREI, UCC M.Eng.Sc., B.E.

Supervisors - Prof. Brian O'Gallachoir, UCC & Dr. James Glynn, UCC

 To generate Energy Service demands for Transport Sector

 The Generated Energy Service demands will feed into CHIMERA Project to build a global energy model using TIMES framework

- Leverage DeepLearning architectures to mitigate the problem of non-constant variance and limited data points
- Generate Physical demands to incorporate efficiencies during model runs

Concepts

Results

Implementation

Key Takeaways

CONCEPTS

MAPPING PHYSICAL PROCESS TO VIRTUAL DOMAIN

PHYSICAL PROCESS

TREBUCHET LEARNING AND FIRING

Source : Shadowform, Youtube

LEARNING PHASE

FIRING PHASE

IMPLEMENTATION TREBUNET

Generate Higher dimensional metric for each data point i.e. quantile prediction for each data point

Architecture automatically choses the best quantiles to project on

Learning Phase Model

Firing Phase Model

METRIC

GDP * PPLN * METRIC

GDP * PPLN * 9 QUANTILE METRIC

IMPLEMENTATION METHODS

Pre-Process data

INPUTS:

GDP- IMF
Population – UN
Transport Metrics – UN,ITF
Air Mode coverage – 2000-2016
Other Mode Coverage – 1980-2016
Geographical Coverage – OECD

AP- Aviation Passenger AG- Aviation Goods

RaP- Rail Passenger RaG- Rail Goods

RoP- Road Passenger RoG- Road Goods

Hyper-parameter tuning & Freeze Models

SSP Database – GDP and Population baseline

Generate Projections

RESULTS

HISTORICAL LEARNING

TESTING LEARNING POTENTIAL

LEARNING TILL 2005, PROJECTING TILL 2015

TESTING LEARNING POTENTIAL

R²

TILL 2015

RESULTS

ONE YEAR SHORT TERM PROJECTION FOR YEAR 2016

TESTING LEARNING POTENTIAL

ABSOLUTE PERCENTAGE ERROR
IN PREDICTING RESPECTIVE
DATA-SERIES USING TRAINED
MODEL OVER 2016 DATA-POINTS

RESULTS

OECD TRANSPORT DEMAND PROJECTIONS (2020–2050)

SSP-2 PROJECTIONS PASSENGER

SSP-2 PROJECTIONS

FREIGHT

RESULTS

IT'S A "BLACK BOX"!

SURFACE

FRANCE
 GERMANY

GDP (2005 VSS, 989)

KEYTAKEAWAY SUMMARY

Capturing of non linear behaviour inside neural networks

Method applicable for non constant variance data series

New Method that improves upon a rudimentary Neural network architecture

Can be applied to other sectors also e.g. Residential, Industrial energy Service Demands

THANK YOU

CONTACT: SIDDHARTH (DOT) JOSHI (AT) UCC (DOT) IE

TWITTER: @SIDDHAR28031625