

Feasibility study of China's electric power sector transition to zero emissions by 2050

Oleg Lugovoy*, Jiang Kejun**, Gao Shuo*, Gao Ji*

- * Environmental Defense Fund, USA, China
- ** Energy Research Institute, NDRC, China

12th IAMC Annual Meeting, Tsukuba, Japan, 2 - 4 December 2019

Outline

• Brainstorming zero-emissions options for 2050

Methodology and assumptions

Major results and conclusions

Electricity decarbonization options

Carbon capturing and sequestration (questionable)

Biomass (questionable – emissions, resource?)

Nuclear and large hydro (achievable, but..)

- Renewables:
 - Technically feasible?
 - Economically viable?

Strategy

- Evaluate technically and economically feasible share of renewables in electric power generation, optimizing:
 - Solar arrays and Wind farms capacity & locations
 - UHV grid
 - Required storage
 - (and/or) back-up capacity (biomass-to-power)
- Optimize transition from the current capacity to the targeted (optimized on the first step) structure

Methodology

- Hourly weather data for dynamic evaluation of renewables potential
- CHN_ELC_PRO model
 - Capacity expansion, cost minimizing
 - 31 regions (provinces)
 - Two versions of the model:
 - 8760 hours, 1 year (resources balancing)
 - 12 months x 24 hours, from 2015 to 2055 (transition pathway optimization)
- Scenarios:
 - 1 hour balancing for 2050 to evaluate the target
 - Optimized from 2018 to 2050

Step 1: Renewables potential with 1 hour resolution

Based on MERRA-2 data (NASA) of wind speed and solar radiation from 1980 to 2019

Renewables costs

Wind turbines

Onshore:

NREL (2018):

Datang P.C. (2019),

1 USD/Watt (~6.9 RMB/Watt)

2018: 7.25 RMB/Watt

Datang Power Corp (2019):

2023: 6.7 RMB/Watt

2018: 4.5 RMB/Watt

Offshore:

2023: 3.5 RMB/Watt

2018: 12 RMB/Watt

2023: 11.2 RMB/Watt

LCOE assumptions:

5% discount rate,

25 years life span

LCOE for solar PVs in 2018 (1980-2018 average)

~ 2.5 - 4.6 US cents per KWh (6.9 RMB/USD)

LCOE for solar PVs in 2025 (1980-2018 average)

~ 1.4 - 2.6 US cents per KWh (6.9 RMB/USD)

LCOE for solar PVs in 2025 (1980-2018 average)

~ 1.4 - 2.6 US cents per KWh (6.9 RMB/USD)

Solar energy is cheap and abundant

Even with a miscalculation up to 100%, the expected costs in 2025 will not exceed 5 US cents/kWh

What about 2050?

Selected best locations for on/offshore windfarms ~ 1.5 - 25.5 US cents per KWh (6.9 RMB/USD)

Step 2: Optimization of electric power system in 2050

Using weather data (39-years) and capacity expansion model CHN ELC PRO, balancing version

Why 1h balancing is important?

 Matching Electric Power System structure with historical weather

- Optimized energy system structure:
 - Capacity structure and locations
 - Energy storage
 - Long-distance power grid

"Let the weather decide..."*

^{*} Borrowed from Prof. Martin Greiner, Aarhus University talk at OpenMod 2019

Assumptions: Or what do we know about 2050?

- Demand is going to grow
- Electrification trends may induce demand growth

Electricity demand growth assumptions, 2015-2050

Assumptions: Or what do we know about 2050?

- Demand is going to grow
- Electrification trends may induce demand growth
- Structure of demand is going to change:
 - End-use batteries (incl. electric transport) i.e. more flexible
 - Robotization of industry, transport, etc. again more flexible (no day/night shifts, stop and go mode...)
 - This will affect the load curve (flexible? manageable?)

Types of demand and the load curve

- Fixed location (same as in 2015), Static
 - Location and the level of consumption are fixed
- Optimized location, Static
 - Territory/location is to be optimized by the model
 - Once built static
- Fixed location (same as in 2015), flexible within 24h
 - Can be shifted within a day
 - Territory/location is fixed
- Optimized location, flexible load, minimum 35% a year
 - Territory/location is to be optimized by the model
 - May vary in time

Electricity demand structure assumptions

Assumptions: Or what do we know about 2050?

- Demand is going to grow
- Electrification trends may induce demand growth
- Structure of demand is going to change:
 - End-use batteries (incl. electric transport) i.e. more flexible
 - Robotization of industry, transport, etc. again more flexible (no day/night shifts, stop and go mode...)
 - This will affect the load curve (flexible? manageable?)
- Most of the new capacities from both ends (demand and supply) are to be built, the current thermal power plants capacity will mostly retire

More key assumptions:

- Load curve 2050:
 - flat + flexible (40% or 60%) = weather driven
- Intraday storage
 - \$100 USD/kWh capacity,
 - Operational life: 10 years
 - Round efficiency 80%
- Long-term storage (a la P2X):
 - 0.5 RMB/kWh (~7.5 US cents / kWh)
- UHV grid (UHVDC in mind):
 - ~ 3 Million RMB / GW of 2000km line total costs
 - 2% transformation losses, 1% per 1000 km

64 core scenarios

- 3 types of the final demand structure (S, A, F)
- Investment costs (R current, P perspective)
- Biomass to power option (T thermal)
- Limits on investment into UHVDC grid (no limits, 50%, 25%, 10% of cost-optimal)
- Relatively higher (H) or lower (L) reliability of power system

Modeling long-distance grid

Power sector capacity structure

Power production by technologies

Generation profile in 2050 (base on 2018 weather data)

Generation profile (Jan 20, 2050)

Optimized UHVDC grid by scenarios

UHVDC grid, two selected scenarios

Required investments

Levelized costs of electricity (3-5 US cents per kWh)

Annual generation profile

Annual demand profile ("A")

Summary of results

Solar and wind – reach potential

Interregional grid may significantly reduce balancing costs

 Demand Side Response (DSR) can significantly reduce requirement for storage

 Systemwide electricity costs: 3-5 US cents per kWh with DSR, even with current costs of technologies (in China)

Summary of results (cont.)

 Zero emissions power sector scenarios for China are:

technically feasible

economically viable and cost competitive

• Is ~100% renewables BAU?

Channel: "CHN_ELC_PRO" (currently updating)

Simulation of zero emission China's Electric Power Sector in 2050 3 views • 6 hours ago

The visualization of results from China Electric Power sector Province level optimization model CHN_ELC_PRO: - hour-level resolution, 31 regions (provinces). - Weather data is from MERRA-2

Thank you for your attention!

Oleg Lugovoy*, Jiang Kejun**, Gao Shuo*, Gao Ji*

* Environmental Defense Fund, USA, China

** Energy Research Institute, NDRC, China

Satellite study for US and India, in work: YouTube channel "energyRt"

Scenario #8: "The Wind and the Sun - 10"

Scenario #7: "The Wind and the Sun – 100"

Scenario #6: "The Wind and the Sun"

Scenario #5: "Windy states - 100"

Scenario #4: "Sharing the Sun - 10"