Standardization of scenario data collection via the IAMC data template: past developments and future challenges

Volker Krey

Energy, Climate & Environment (ECE) Program International Institute for Applied Systems Analysis (IIASA)

Founded 2007

IAMC webinar, 20 June 2023

Overview

- Looking back
 - \Rightarrow Challenges of scenario data collection
 - ⇒ Development of first IAMC data template
 - \Rightarrow Revisions and extensions
 - ⇒ Scenario Database/Explorer
 - \Rightarrow Applications and statistics
- Taking Stock
 - \Rightarrow Challenges and issues
 - \Rightarrow Tools around the template
- Looking forward
 - \Rightarrow Ideas to overcome challenges

Looking Back

Challenge

- After completion of 4th IPCC assessment cycle increasing number of model intercomparison projects and "ex-post" scenario studies (2008/2009)
- Every study used its own data template for collecting scenario data (e.g., long vs. wide table format, different variable names, specific headers)
- Providing scenario data became an increasing workload for modeling teams

Example: EMF22

Goal: international scenarios will explore near-term inefficiencies in international participation on a transition toward stabilizing CO2-equivalent concentrations over the long term

	Α	В	C	D	E	F	G	Н	I	J	K	L	М	N
	Required/									Overshoot/St				
\mathbf{T}_{i}	Optional	Notes	Category	Variable	Region	Units	Model	Scenario	Level	abilization	2000	2010	2020	2030
2	Required		Economics	GDP (MER)	Global	Trillion 2005 U.S. \$		Reference	N/A	N/A				
3	Required		Economics	GDP (MER)	Group I	Trillion 2005 U.S. \$		Reference	N/A	N/A				
4	Required		Economics	GDP (MER)	Group 2	Trillion 2005 U.S. \$		Reference	N/A	N/A				
5	Required		Economics	GDP (MER)	Group 3	Trillion 2005 U.S. \$		Reference	N/A	N/A				
6	Required		Economics	GDP (MER)	United States	Trillion 2005 U.S. \$		Reference	N/A	N/A				
7	Required		Economics	GDP (MER)	European Union	Trillion 2005 U.S. \$		Reference	N/A	N/A				
8	Required		Economics	GDP (MER)	China	Trillion 2005 U.S. \$		Reference	N/A	N/A				
9	Required		Economics	GDP (MER)	India	Trillion 2005 U.S. \$		Reference	N/A	N/A				
10	Required		Population	Population	Global	Billion		Reference	N/A	N/A				
ш	Required		Population	Population	Group I	Billion		Reference	N/A	N/A				
12	Required		Population	Population	Group 2	Billion		Reference	N/A	N/A				
13	Required		Population	Population	Group 3	Billion		Reference	N/A	N/A				
14	Required		Population	Population	United States	Billion		Reference	N/A	N/A				
15	Required		Population	Population	European Union	Billion		Reference	N/A	N/A				
16	Required		Population	Population	China	Billion		Reference	N/A	N/A				
17	Required		Population	Population	India	Billion		Reference	N/A	N/A				
18	Required**	9	Economics	Consumption	Global	Billion		Reference	N/A	N/A				
19	Required**	9	Economics	Consumption	United States	Billion		Reference	N/A	N/A				
20	Required**	9	Economics	Consumption	European Union	Billion		Reference	N/A	N/A				
21	Required**	9	Economics	Consumption	China	Billion		Reference	N/A	N/A				
22	Required***	9	Economics	Consumption	India	Billion		Reference	N/A	N/A				
23	Required**	9	Economics	Policy Cost (Area under MAC)	Global	Billion		Reference	N/A	N/A				
24	Required**	9	Economics	Policy Cost (Area under MAC)	United States	Billion		Reference	N/A	N/A				
25	Required**	9	Economics	Policy Cost (Area under MAC)	European Union	Billion		Reference	N/A	N/A				
26	Required**	9	Economics	Policy Cost (Area under MAC)	China	Billion		Reference	N/A	N/A				
27	Required**	9	Economics	Policy Cost (Area under MAC)	India	Billion		Reference	N/A	N/A				
		Internati	onal Scenario Notes Reference	e Scenario Scen_1 Stabilization 2.6 Wm2	Scen_1 Overshoot 2	.6 Wm2 Sc€ (+) 🕴 🚺								

Example: NIES

Goal: analyze "How mitigation potentials are different? & Why different?" and discuss "How should these potentials be compared one another ?" in the latest bottom-up type studies

(c) Data format of baseline emissions and mitigation potentials

1) Please send GHG emissions in the baseline and mitigation potentials under a certain carbon price in intervention scenarios as much detail as possible in order to compare your results by region and sector with other studies and the IPCC AR4

2) If you have any proposals of additional data submission rather than the followings, please suggest and send such

Column code	Items
Sector	Your original sectoral classification (or sectors such as Tier 1 to Tier 3. Please see "ReadMe")
Region	Your original regional classification (or regions such as Tier 1 to Tier 3. Please see "ReadMe")
Year	Base year, 2020, and 2030
Gas	Please specily CO2, CH4, N2O, HFCs, PFCs or SF6
Unit	MtCO2, MtCO2 eq., MtC, or MtC eq.
Baseline emissions	Baseline emissions in the base year, 2020, and 2030
	Mitigation potentials under a certain carbon price compared with the baseline
	Technological potentials
Witigation potentials	Note1) If you do not calculate or cannot submit mitigation potentials under a certain carbon price for any
	reason, please send technological potentials without considering limitation of abatement costs.

D	m	pa	risc	n	st	ep	

N O

		reason, please send :	technological potentia	ls without considering	limitation of abateme	nt costs.						
			-									
	Scenario name											
	Sector	Region	Year	Gas	Unit	Baseline emissions		1	Vitigation potentials		1	
							Mi	tigation potentials und	er a certain carbon p	rice	Technological	
								<20 US\$/tCO2	<50 US\$/tCO2	<100 US\$/tCO2	potentials	
												1
												1
												4
												1
												1
												1
												1
												_
												1
												4
												1
												1
												1
												1
												1
						<u> </u>						
1	(a) Basic	Info (a) Basic	Info(example)	(b)SocioEcono	mics (b)Socio	- Economics(exam	nole) (c)Emisi	ons&potentials	(c)Emisions&	notentials(exami	ole) (d)ene	ergy(exam

Example: AIXG

Goal: examine how national and sectoral GHG mitigation potential compares between models used by specific countries for policy-making (i.e. your model input) and global institution models (e.g. OECD, IEA, and others)

	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q
4						COUNT	RY:						GLOB/	AL:			
5				1990	2000	2010	2020	2030	2040	2050	1990	2000	2010	2020	2030	2040	2050
6		GDP	(please provide units, e.g. 2005 USD)														
7			Households														
8		Equivalent Variation [1]	Government														
9		Population	Million people														
10		Energy Use	(please provide units)														
11			Energy supply: electric														
12			Energy supply: non- electric														
13			Transportation														
14			Buildings														
15		GHG	Energy-intensive Industry														
16		emissions (Absolute	Other industry														
17		MtCO2e)	Agriculture														
18			Forestry														
19			Waste														
	•	Model Struc	cture Baseline Polic	y Scenario	S (+)								•				

Example: World Development Report 2009

Goal: understand how to energize development without compromising the climate

	А	В	С	D	E	F	G	Н	1	J	K	L	М	Ν	0
1															
2	Energy Investment (World)														
3	Baseline	Unit	2000	2010	2020	2030	2040	2050	2060	2070	2080	2090	2100	Note	
4	Fossil Extraction	US\$2000													
5	Fossil Electricity	US\$2000													
6	Non fossil Electricity	US\$2000													
7	CCS	US\$2000													
8	Hydrogen	US\$2000													
9	Bioenergy	US\$2000													
10	Other	US\$2000													
11	Demand Saving	US\$2000													
12															
13	450 ppmv (CO2-eq.)	Unit	2000	2010	2020	2030	2040	2050	2060	2070	2080	2090	2100	Note	
14	Fossil Extraction	US\$2000													
15	Fossil Electricity	US\$2000													
16	Non fossil Electricity	US\$2000													
17	CCS	US\$2000													
18	Hydrogen	US\$2000													
19	Bioenergy	US\$2000													
20	Other	US\$2000													
21	Demand Saving	US\$2000													
22															
23	Diff btw Baseline and 450ppmv (CO2-eq.)	Unit	2000	2010	2020	2030	2040	2050	2060	2070	2080	2090	2100	Note	
24	Fossil Extraction	US\$2000													
25	Fossil Electricity	US\$2000													
26	Non fossil Electricity	US\$2000													
27	CCS	US\$2000													
28	Hydrogen	US\$2000													
29	Bioenergy	US\$2000													
30	Other	US\$2000													
31	Demand Saving	US\$2000													
32		final anarry		an investor		tigation									
-	primary_energy electricity	inal_energy	mitigatio	on_investm	ent mi	ligation_we	eage	(+)							

2nd IAMC Annual Meeting in 2009

- Held back-to-back with Asian Modeling Exercise (AME) kickoff meeting in Tsukuba in September 2009
- Small working group established to develop a first version of a "IAMC data template"
- AME took pioneering role for testing first data template (and accompanying scenario database)
- EMF24 followed soon ...

Working group

Kate Calvin (PNNL) Leon Clarke Tatsuya Hanaoka (PNNL) (NIES)

oka Mikiko Kainuma (NIES)

ma Peter Kolp (IIASA)

Volker Krey (IIASA) Keywan Riahi Bas van Ruijven (IIASA) (PBL)

First calls in October 2009

- Template specifications
- Variable and region definitions (driven by AME)

Template requirements

- easy to use for both data suppliers and data analysts
- close enough to existing template structures to ensure acceptability
- machine writable/readable
- highly adaptable to the needs of future modeling comparison projects and data collection efforts
- suitable for small- and large-scale applications, i.e. processing with simple tools (spreadsheets) and databases should be possible

A three-layered approach

- Universal IAMC data container
- Specification of standard Regions, Variables and Units
- Specification of custom Regions, Variables and Units
 - ⇒ Specific instance of data template

Determined by needs of application, but based on IAMC scheme

Template specifications

- File format
 - ⇒ Advanced formats, e.g., XML-based such as SDMX, or others such as GESMES/TS technically preferable
 - ⇒ Comma separated value (csv) files cause problems with different decimal separators, quotation marks, etc.
 - ⇒ Microsoft Excel (xls, xlsx) was least common denominator
- Flexibility
 - ⇒ Hierarchical structure of variables with flexible number of levels via use of separator "|"
 - ⇒ Flexible time steps/years

Data Template: Time-series data

- 4	A	В	C	D	E	F	G	H		J	K	L	M	N	0	P
1	Model	Scenario	Region	Variable	Unit	2005	2010	2020	2030	2040	2050	2060	2070	2080	2090	21(-
2			.	PopulationITotal	million											
2				Population Ishan	million											
4				Population Rural	million											
5				GDP Total MER	billion US\$2005/yr											
6				GDP Total PPP	billion US\$2005/yr											
7				GDPIIndustryIMER	billion US\$2005/vr											
8				GDPIServicesIMER	billion US\$2005/vr											=
q				GDPIAgricultureIMER	billion LIS\$2005/yr											
10				Drimony Energy/Tetal	E l/vr											
10					Eller											
10				Primary Energy Fossil Total	EJ/yi											
12				Primary Energy Fossil W/ CCS	EJ/yr											
13				Primary Energy Fossil w/o CCS	EJ/yr											
- 14				Primary Energy Coal Total	EJ/yr											
15				Primary Energy Coal w/ CCS	EJ/yr											
16				Primary EnergylCoallw/o CCS	EJ/vr											
17				Primary Energy[Oil]Total	EJ/vr											
18				Primary Energy/Oillw/ CCS	El/vr											
10				Drimony Energy/Oil/w/o CCS	Eller											
19				Primary Energy Origwid CCS	EJ/yi											
20				Primary Energy Gas Total	EJ/yr											
21				Primary Energy Gas w/ CCS	EJ/yr											
22				Primary Energy Gas w/o CCS	EJ/yr											
23				Primary Energy Biomass Total	EJ/yr											
24				Primary Energy Biomass w/ CCS	EJ/yr											
25				Primary Energy/Biomasslw/o CCS	EJ/vr											
26				Primary Energy/Nuclear/Total	EJ/vr											
27				Primary EnergyINon-Biomass Renewables	Ell/vr											
28				Primary Energy/Hydro Total	Ellyr											
20					Ellyr											
23				Primary Energy/Wind/Total	EJ/yr											
30				Primary Energy/Solar/Total	EJ/yr											
31				Primary Energy Geothermal Total	EJ/yr											
32				Primary Energy Ocean Total	EJ/yr											
33				Primary Energy Secondary Energy Trade Total	EJ/yr											
34				Primary Energy Other	EJ/yr											
35				Secondary Energy Electricity Total	EJ/yr											
36				Secondary Energy Electricity Coal Total	EJ/yr											
37				Secondary Energy/Electricity/Coallw/ CCS	EJ/vr											
38				Secondary Energy/Electricity/Coallw/o CCS	E.I/vr											
39				Secondary Energy Electricity (OillTotal	El/vr											
40				Secondary Energy/Electricity/Oil/Indui	Ellyr											
40				Secondary Energy[Electricity[Oil]w/ 000	Eller											
41				Secondary Energy[Electricity[Oli]W/0 CCS	EJ/yi											
42				Secondary Energy Electricity Gas I otal	EJ/yr											
43				Secondary Energy Electricity Gas w/ CCS	EJ/yr											
44				Secondary Energy Electricity Gas w/o CCS	EJ/yr											
45				Secondary Energy Electricity Biomass Total	EJ/yr											
46				Secondary Energy Electricity Biomass w/ CCS	EJ/yr											
47				Secondary Energy Electricity Biomass w/o CCS	EJ/yr											
				, ,, ,, ,, ,,	-											

Meta Data: Models and Scenarios

Model

- Model name & version
- Time horizon
- Model type (e.g., general vs. partial equilibrium; recursive-dynamic vs. inter-temporal)
- Cost metrics: GDP & consumption losses/system cost

Scenario

• ...

•

- Part of a bigger exercise? (e.g., EMF27, AMPERE)
- Type: baseline/climate policy/diagnostic
- Climate Target (e.g., none/temperature/radiative forcing/emissions)
- Climate Policy: cap (and trade), price, regional policies
- Status: published (peer-reviewed/non-peer reviewed), preliminary

A	8.	C	P	a	R	5	T	U.
5 C	Model	Version	Regional coverage	liumber of regions	Trade	Energy service sectors	Economic sectors	Energy technologies
	Fieaso	Specify the native model		C. S. S. S. C. S. C. S. C. S. C. S.	What commodilies are traded between	Does the model explicitly	Does the model explicitly	Which of the following energy con
		version number. If you do			model regions? Please specify by	describe energy services in the	describe outputs of the	technologies (or technology group
		not have a version			selecting from the green list below.	following sectors? Please	falowing sectors: agriculture,	modeled. Please select all technol
		number to distinguisit				specify it the green bax.	industry, services, energy.	which this is the case in the greet
		different model versions,					Please select in the grees box.	
		use an aternative						
Sector Sector Sector		differences in model						
HILITOCHCHL STEDIN		version.						
Answers								
	# Model	# Version	Please select	* umber of regiona	Processed goods - No	Transport - Ne	Agriculture - No	Electricity Generation - No
			Real	and coverage				
			Plea	se select from the	Capital - No	Industry - No	Industry - No	Coal with CCS - No
			list		Coal - No	Residential & Commercial - No	Services - No	Cost w/CCS - No
					22.2.0			
					CH - NO		Energy - No	Gas we CES - No
					048 - 10			Cas moust mo
					to the second			and the second
					Unanium - No			OF MAD CES - NE
					Boenergy crops - No			OI M/CCS - No
					Food crops - No			Sidenergy w/b CCS - No
					Electricity - No			Bisenergy w/CCS - No
					Emissions permits - No			Geothermal - No
								Nuclear Power - Inc
								Solar Power - No
								Solar PowerCentral Protovolac
								Scer Powelcus cues motors
								sourcestration asiar fractual. No.
								Mind - Mo
								WoodCoahers Wed - No.
								Manufacture wind he
								Number of the second state of the
								Cardbarrad Brown
								Onean Rower - Mo
								Other Calegory Nesse Merilly
								Holizana Producting - No
								Coalto Hydropes with CCS - Mo
								Coalto Hydropen w/CC5 - No
								Natural Gas to Hydrogen w/s CCS
								Natural Gas to Hydrogen w/OCS -
								Oil to Hydrogen w/o CCS - No
								Oil to Hydrogen w/o CCS - No Oil to Hydrogen w/OCS - No

Revisions and Extensions

Revisions

- Remove of "Total" (2011)
 - ⇒ Primary Energy|Total -> Primary Energy
- Revision of emission variables (SSPs/CMIP6 harmonization, 2015)
 - ⇒ Definitions based on IPCC National Emission Inventory Guidelines (2006)
- Revision of final energy variables (project NAVIGATE, 2022)
 - \Rightarrow Separation of non-energy use and bunker fuel use
 - \Rightarrow Reporting of gross carbon flows

Extensions

- Addition of sub-annual timeslices (project openENTRANCE, 2019/20)
- Countless variables added

Scenario Database/Explorer

- Interactive web database with user and group management (incl. administrator)
- Automated aggregation to "standard regions"
- Some automated quality checks (model, variable and region names, base year data, variable ranges, additivity)
- Download functionality for database snapshots, data template, etc.
- Data visualization and dissemination to the public

Applications of Template/Databases (incomplete)

- Asian Modeling Exercise (AME)
- Stanford Energy Modeling Forum: EMF24 (US), EMF27 (global), EMF28 (EU), EMF30 (global), EMF32 (US), EMF33 (global), EMF35 (Japan), EMF37 (US)
- IPCC: AR5, SR1.5/SRCCL, AR6
- Global Energy Assessment (GEA)
- Representative Concentration Pathways (RCPs)
- Shared Socio-economic Pathways (SSPs)
- EU Framework Projects: AMPERE, LIMITS, ADVANCE (FP7), CD-LINKS, openENTRANCE, ENGAGE, NAVIGATE, (H2020), ELEVATE, PRISMA, CIRCOMOD, CircEUlar, ... (HEU)
- US/EuropeAid: Latin American Modeling Project (LAMP), MILES, COMMIT, COMMITTED,
 ...
- National: SPIPA India, Energy Foundation China, US National Climate Assessment, ARIADNE (Germany), EU Climate Advisory Board, ...
- Network for Greening the Financial System (NGFS): Phase 1-4

Scenario Databases: Access statistics

and many more ...

IPCC SR1.5 explorer

SSP database

https://tntcat.iiasa.ac.at/SspDb

NGFS finance pathways

https://data.ece.iiasa.ac.at/ngfs

Taking Stock

Challenges and Issues

- No strict hierarchy in variables naming
 - \Rightarrow ambiguity, variable name length, no summation rules
- No central approval instance for new variable names
 - ⇒ Incompatible variable extensions used in parallel
- Metadata never got fully picked up
 - ⇒ Most interesting for assessments, requires manual effort
- Comment functionality, e.g. to document non-compliance with definitions, rarely used
- Automated quality control despite of efforts has large gaps
 - \Rightarrow Limited variable set
 - \Rightarrow Typically not implemented at regional level

Tools to work with IAMC data template

https://github.com/IAMconsortium

Looking Forward

New Scientific Working Group Co-chairs

Additional co-chairs appointed following IAMC Annual Meeting 2022

- Next steps
 - ⇒ Establish data template subgroups that maintain sections independently (but in a coordinated way)
 - ⇒ Establish repositories and develop tools for maintenance of IAMC data template

Ken Oshiro (Kyoto University)

Jessica Strefler (PIK)

Data template subgroup candidates (proposal)

Members ideally align research interest with responsibility for template

- emissions (incl. carbon management, carbon dioxide removal)
- primary energy, secondary energy, energy prices
- industry (incl. non-energy use, materials)
- buildings
- transport (incl. bunkers)
- techno-economic information, energy capacity & investment
- macro-economy (incl. demography, value added, employment, effort sharing, household, governance, policy, trade, energy (trade))
- land (incl. agriculture, food, forestry, land cover, water (agriculture))
- sustainable development goals (incl., air quality, health, resilience, risk, poverty, inequality)

Special Thanks to:

Daniel Huppmann

Philip Hackstock

Edward Byers Maximilian Wolschlager Peter Kolp

Thank you very much for your attention!

Volker Krey Group Leader – Integrated Assessment & Climate Change (IACC) Group Energy, Climate & Environment (ECE) Program International Institute for Applied Systems Analysis (IIASA) Laxenburg, Austria krey@iiasa.ac.at www.iiasa.ac.at